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1. Statement of the Problem. In practice cases are encountered
when it is required to know stability characteristics of physical systems
not for the whole time interval ¢t > ty (stability in Liapunov's sense)
but for some finite interval of time tys t< T,

Ve will call the unperturbed motion stable with respect to given e and
C in a finite time interval ty< t< T, if at t = t; the following holds
good:

wa2<€ (1.1)
s .
and for att ¢t in the interval ty <t T the following relationship is

satisfied:

Dz

8

N

c (1.2)

Here T, ¢, and C are given.

Let us find conditions for stability (in the above sense) of unper-
turbed motion of a system for a few cases.

2. Linear Systems with Variable Coefficients. In this case the
equations of the perturbed motion of the system have the following form:

d
o e PO T 4 A Pn (VTn =1, ) (2.1)

where p_ (t) are real bounded continuous functions of time t and may de-
pend on some parameters.

To solve the problem let us consider the function
2V = (2,2 4. ..+ 2,?) (2.2)

where a is a positive number which we are leaving undefined for the time
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being. This function was first used by Liapunov in his proof of the
theorem of boundedness of characteristic numbers.

In virtue of (2.1) we have

v 8V oV dx
P ra +Zax d—:z ~—e““ (2.2 + . +xn2)+e—“‘2_|xs —e—“‘W(Z 3)
Here
Psy + P o 1 for s=r
PNy s s s =
W“Z( 2 Bsrz)””sx' Bar {0 for s=£»

sr

Let us choose a and the parameters of the coefficients p_, such that
the quadratic form ¥ would be negative definite. In accordance with
Sylvester's theorems it is sufficient and necessary to this end to have
the inequalities

_pll_l_% _Pm—{z-Pex o .__plr_;prl
Dy=] « « o oo IS0 et R (2.4)

Pntp Pry+ P x

. r12 r r22 ar '—prr+7

Under these conditions — ¥ will be positive definite quadratic fomm
and, therefore, it is always possible to find a positive number p such
that the following will hold good:

W= — 21 (M 3 2>$s9€r %(azi2 + o+ 202 (2.5)

Substituting inequality (2.5) into (2.3), by virtue of (2.2), we obtain

dv

7 < po e (@2 A x?) = (2.6)
Let us assume that at t = t; the point (xlo, coe, xno) lies on the

sphere (¢), i.e. x, .2 + ... + xn 2 = ¢ and that at some instant t the

point reaches the sphere (C), 1i.e. 112 oo+ xnz = C.

Let us find this instant. Let t; = 0. Then, integrating inequality
(2.6), we obtain

V < Ve ut
But, according to (2.2)
Vo=, V =—1eC.

Therefore
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! m& (2.7)

o — P >

Lot or 4>

From this we can see that if the last inequality has the opposite sign
then the point (xl, .++, x,) cannot reach the sphere (C). Therefore, if

1 C
— In - (2.8)

T =
o

then for all t < T no trajectory can extend beyond the sphere (C). Further,
it may be seen from (2.7) that the smaller the sphere (), the greater the
time t. Therefore, if conditions (2.8) are satisfied then inequalities
(1.1) and (1.2) will also be satisfied.

Equation (2.8) contains a and p, which must be so chosen that equation
(2.5) is satisfied. Let us write (2.5) in the following form:

W= [_ _’i_j_” + 35— _*2‘_)] 2,2, >0 (2.9)

8 1

Thus w, is a positive definite form.
Let
A= — [ (2.10)

The necessary and sufficient conditions for the quadratic form (2.9)
to be positive are of the form

— Pu —i—% — Pm—;-pn R Plr'zi'Prl
D, = >0 r=1,.. 0
Ppptp P+ P Lo
_ r12 o r22 e P + 5 | (2.11)

From the above considerations the following conclusion for system (2.1)
can be stated.

Theorem 1. The unperturbed motion will be stable with respect to given
¢ and C in the finite interval of time t; < t < T if conditions (2.11) are
satisfied.

3. A Special Case of a Linear System and a Linear System
with Constant Coefficients. Let us consider a special case when for
system (2.1) in the time interval t, < t < T the following equations hold
good:

Por (1) = €or + 8fer (1) (3.1)
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where ¢, are constants, 5 is a sufficiently small number, and for (t) are
bounded functions. In this case system (2.1) has the form

d
Tt—'-=651x+...+03n13n+8f31$1+...+8fmxn (s:i,."’n)

The total derivative of function V (2.2) by virtue of this system has
the form

F_e —at [}J(""‘cn srz)xsxf'l' Zg&if_"x'mr]

The coefficients of the second quadratic form in brackets on the right-
hand side of this equation are sufficiently small for the sign of the
function in brackets to be completely determined by the sign of the first
quadratic form.

Performing calculations analogous to those of the preceding section we
obtain stability conditions of form (2.11), where all p_ (t) are replaced
by constants ¢ .r

Let us now consider a linear function with constant coefficients:

d
%=C;1x1+...+C3nxn (6‘21""”‘) (3'2)

The total derivative of the function V (2.2) by virtue of (3.2) has
the form

‘% =West, W= ZI ( sr + Crg — B, f_:) Loy

To make dV/dt < 0, the following conditions must be satisfied:

ey + __g_ . 012-; o Cyr j’ ‘n
D, = >0 (r=1,..., n)
¢, +c ¢, +¢ a 3.3
. n 5 ir 12 3 2r JR— + _2_ ( )

Under these conditions - ¥ will be a positive definite symmetric
quadratic form. Its extremum on the sphere x12 + oees + xnz = A is defined
by the expression

_ 2‘ (Lrtim 5, &g, = 5 Nae (3.4)

s

where 1/2 x are the roots of the secular equation
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K= |— s, (%) =0 (3.5)

2

According to Sylvester’'s theorem all these roots will be real and
positive, since the quadratic form is positive definite.

According to (3.4) we have:
%= —x-lze—“‘(zlz-}— “ e +xn2)= —xV

Carrying out a calculation analogous to that of the preceding section,
we obtain an equality for the time of arrival of the point on the sphere

(©):

1
o —x

t = ln—q
4

Let a - x = A. It is seen that A will be roots of the equation

AQy=|— & + Gy S| =0 (3.6)

All the roots of this secular equation will also be real.

Let us examine only positive roots of equation (3.6). Let these be
Ay e p and let 0<A A€ el €A

Then on the basis of the equality t = A™! In(C/e), the greatest possible
travel time of a point from the sphere (¢ ) to the sphere (C) is equal to

A1‘1 In(C/e ), and the least possible travel time is equal to Ak“l 1In(C/e ).
If we take

T<%ln L (3.7)

then conditions (1.1) and (1.2) will be satisfied. Therefore, we have the
following theorem.

Theorem 2. For the unperturbed motion of the system to be stable with

respect to given ¢ and C in a finite time interval tgS t g T, it is
sufficient for conditions (3.7) to be satisfied.

4. Nonlinear system. let us consider a more general case. let

——i=p,1(t)x,+...+psn(t)xn+X, (s=1,...,n) (4.1)

where X, = X (t, z,, ..., z,) are holomorphlc functions of the variables
Xyy eeey X, and first terms of their expansions are not lower than of the

second order. Coefficients of these functions are real continuous bounded
functions of t.
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1. ¢ and C are sufficiently small. The total derivative of the func-
tion (2.2) in virtue of (4.1) has the form

4;% p— [W + 3z, X.] (W = (Par -Iz- P 5 2 g) a;,x,.) (4.2)

In this case the sign of dV/dt is completely determined by the sign of
¥, so that the inequality dV/dt < 0 is satisfied for conditions (2.4).

Setisfying (2.4), we have
= < —p ye (x4 ...+ 7,0
As in Section 2, we obtain

1 c
In =~
o —p €

t>

1

T=7 (r=oa—p)

ln—C~
-4

Then (1.1) and (1.2) will be satisfied. Or, let us proceed this way:
let
/P"+Prs

27

Introducing [ 3] the notation S = X x X, we have
s

8er 2>xsxr + DX, < —'—*21(301‘“ +...+z?)  (4.3)

S| <R (@2 + . . . + 2:2)
where R(t) is a positive function which is the upper exact limit of the

function

for t, <t T

;| 3o

%+ .
Let
2 (5L¥5_6,, %) Ty + R (t) (22 + ... 223 < — %—(ac,2 + .o z?) (4.4)
87T

Obviously, if this condition is satisfied, then condition (4.3) applies
Let us write (4.4) in different form:

Py TP A
W1=Z ['_‘ s 3 A +8sr<§’——R (t))]xs$r> 0
8, r
For W, to be a positive form it is necessary and sufficient to satisfy
the following inequalities:
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Py TP
—pu+—2————R(t) _Pu';}’u _ 1r2 1
D,=|. . ... 0000 e e e e e >0
PntP Peg + P A
__'12_" '_%i~--_prr+'f‘_R(t)
(l'= 1,... n) (4.5)

Therefore, we have the following theorem for (4.1).

Theorem 3. For the unperturbed motion of system (4.1) to be stable
with respect to given ¢ and C in a finite time interval t < t < T, it is
sufficient for conditions (4.5) to be satisfied.

Conditions (4.5) contain R(t). We can obtain other sufficient but
simpler conditions without R(t).

Indeed, from the inequality (4.3) it follows that in case 1 the sign
of the function on the left-hand side of this inequality is completely
determined by the quadratic form. Thus for (4.3) to apply it is sufficient
to satisfy the inequalities (2.11).

2. Case when ¢ and C are finite. In this case

‘%— = e~ [W + ; x.X.] (W = ?r (p,,. 5 Pra _ Osr ’;—) xaxr) (4.6)

but ¢ and C are finite and, therefore, the sign of dV/dt is not deter-
mined by the sign of the quadratic form W. Let

§= ZZ,X P
After carrying out computations analogous to those performed for case
1, we obtain conditions of form (4.5) and a theorem analogous to theorem 3.

It should be noted that in this case ¢ and C must be verified by con-
ditions (4.5), which contain R(¢) and permit only a limited range over
which the variables x_ may be varied.

Besides, in this case (¢ and C are finite) conditions (2.11) do not
apply.

3. Case when p_ (t) = ¢, + 8f, (1), i.e. (3.1). In this case, in con-
formity with (4.1, we have

(4.7
=it CnZn + 8 (i .t ) + X, 6=1,....0)

dx
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The total derivative of the function V (2.2) in virtue of (4.7) has
the form

% = g—at [Z (——c” -; Crs ~— 84 %) TsLy 4 2 x. X, + 2 3 L -2*_ fra xsxr] (48)

s, T

If eand C are sufficiently small, the sign of the function in brackets
on the right-hand side of the equation is completely determined by the
sign of the first quadratic form. In that case we obtain stability condi-
tions of form (2.11) with.all psr(t) replaced by constants ¢ .

When ¢ and C are finite, the sign of the function in brackets is
completely determined by the signs of the first two terms of this function.
In that case we obtain stability conditions of form (4.5) with all p_ (t)
replaced by constants ¢ .

5. Nonlinear System with steady Disturbances. Let us consider
a system

dzx
2 =Pa® T+ A P T+ X+ R G=L..m (5.1)

where R describe the steady disturbances. For R, we assume (in conform-
ity with [3]) that R, Rs(t, Xyr oeeny x,) are real continuous bounded
functions of t and x and that R(¢, 0, ..., 0) = 0; and further, that

Ro(t, 2y, . ) =lss )T+ ... F+ len (t) 20 + AX, (5.2)

where ! r(t) and A Xs have the same characteristics as the functions
p,,(t) and X_. In general R  are unknown functions, but in many cases
their values can be estimate.

According to (5.2) we have
d
_:T’ =@Ea+l) ot . . .+ (P +lon) 2a + X, + AX, =10, ") (5.3)

1) Let us consider a case when ¢ and C are sufficiently small.

The total derivative of the function V (2.2) in virtue of (5.3) has
the form

Y ent[3 (Lol F O o), )0, + )] m (X, +4X0)]

8T

In this case dV/dt < 0, if



Stability of motion during a finite time interval 341

— Py L)+ %_ __(P12+112)‘;‘(Pn+ln) . (P1r+llr)'z(prl+lrl)
De=|. . . v e e e >0
_(p,.1+1,1)-:(171r+11,-) _(P,.2+1,,)-:(P2,+l,,.) (et b + _;
r=1,...,n) (5.4)

We will state the results for system (5.1) without computations.

Theorem 4. For the unperturbed motion of system (5.1) to be stable with
respect to given ¢ and C in the finite time interval ¢, < t K T, it is
sufficient for the following inequalities to be satisfied:

|~ Gut ) +2—R@W) 7. . -
D=1 . e e >0
rt T (Pt b+ — K ()
r=1,...,n) (5.5)
Here
o — (Plu'f'zuk)';(f’uk + L)

S =z, (X, +AX,), S| <RE) @2+ ...+ 2a2)
8
Function R(t) is positive and is the upper exact limit of the function

i
mT ey |20 (K A%
8

In addition to (5.5), the following sufficient conditions also apply:

— (Pu+ b))+ oL Ty
Dy=) . . . |>0
T T oo o (prtln)+ '}
r=1,..,n (5.6)

2. If ¢ and C are finite, then Theorem 4 and conditions (5.5) apply,
while conditions (5.6) do not.

3. An investigation of the case when p_ (t) = ¢,y + Of, (t), and
l,,(t) = C°, = constant, may be carried out in the same way as in
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Section 4; the results will be analogous to those of Section 4.

6. Examples. 1. Let us consider a second-order system:

d ‘ d
71?[1' = pu(l) &+ prz (1) o }%2 = P () Ty + paa () 24 6.1

According to Theorem 1 and (2.11), the necessary conditions will be

A o ' " ¢ t
; — )+ *—ﬁ—(‘)z«_i’-lﬂ
—pu () £ > 0. | g
— |- OL el g+

Or, using (2.R8) through (2.10), we have

pu () + g In— >0

§ 1 C rpa - pa 2 §
Copn® = g ) () + 2 ) - B8 P 0 6.)

If p,,(t) contain parameters, then they must be so chosen that the in-
equalities (6.2) are satisfied.

If p, () = ¢+ 8f (t) then, according to the considerations of
Section 3, the following conditions hold good:

o «
—Cyy 27—.11\ — >0

1 C 1 c» 2 -+ c91)?
(. -~ Cpy *1127, l“ T>(_ Conp *‘{”Z;FIIIT)'" (~f-1-—2'—-;;——2l)—>0 (6.3)
2. Given a system
25 \ - f}g » 03
—({t—l = iy () ey - e (t) 5 5 Xy, (711_ == P () &R P (D xa -+ Xy (6.4)

According to (4.5), we have
I'n - ‘i‘ ~R(t)>0 (;}‘: _;" =)
(6.5)
("" P+ ;— — It (”)("‘Pu + ';‘ - H(l)v) ”"(BE‘_I/]LZ‘); >0

lere R(t) is the upper exact limit of the function

fr Xy Ay ]
o

Comparison of (A.5) and (6.2) reveals that stability conditions for
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system (6.4) are narrower than for the linear system. The larger R(t),
the narrower is {6.5). Thus, for R{t) = 1/2 A, we have
— pu> U, (— pud (— ) — (ﬂ'-{—;‘“&lt >0 (6.6)

These conditions are analogous to conditions (6.2) for linear system
(6.1) when

1 C
gpin—=0

In this case ¢ = C, and T 1is arbitrary.

When ¢ and C are sufficiently small, the R(t) is also very small. In
this case, in conformity with (2.11), we have

—}”n’{"*”"‘ln —- >0

6.7)
1 cN/ c 2 (
(-‘Pu—{*ﬂ—,ln —;)(\——p.ﬂ+2~7—,-]u —5—) M>O
This is identical with (6.2} derived for the linear system.
3. For a system with steady disturbances
By () 2y + Pra(l) s+ Xy = R
dt 1n 1 12 2 17 i (6’8)
duas

=P T+ P )+ No - Re

and with conditions (5.2), we have (according to (5.5) and (5.6) ) the
following stability conditions:

, 1 c .
"‘(pn't‘lu)“!—z—T‘hl -—;_——1?([) >0

: ) 1 C . -
[—(pu + 1) + g 1 - = RO [ = (os L)+ g - — R (®)] -

,._I(I_’lf-{‘llz)"*?'-,fpzl"i"l?l)jz >0 (6.9)

and for sufficiently small ¢ and C we have

m(pll+[11) "{“ giif‘hl% >0 (610)

| = u+ )+ g I | [= (s + o) + gppln 5] [Pk ldHon s

In conclusion, the author expresses his deep gratitude to N.G. Chetaev
for the statement of the problem and valuable comments.



344

Chzhan=SyIn

BIBLIOGRAPHY

Chetaev, N.G., Ustoichivost’' dvizheniia (Stability of Motion). GITTL,
1955,

Chetaev, N.G., O vybore parametrov ustoichivoi mekhanicheskoi sistemy
(Choice of parameters for a stable mechanical system). PMM Vol. 4,
No. 3, 1951.

Lebedev, A.A., K zadache ob ustoichivosti dvizheniia na konechnom
intervale vremeni (On a problem of stability of motion in a finite
time interval). PMM Vol. 18, No. 1, 1954,

Karamenkov, G.V., Ob ustoichivosti dvizheniia na konechnom intervale
vremeni (Stability of motion in a finite time interval). PMM Vol.
17, No. 5, 1958,

Translated by P.N.B.



