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1. Statement of the Problem. In practice cases are encountered 

when it is required to know stability characteristics of physical systems 

not for the whole time interval t >/ t, (stability in Liapunov’s sense) 

but for some finite interval of time iO < t < 

Be will call the unperturbed motion stable 

C in a finite time interval t,, 4 t \( T, if at 
good: 

2i%2<E % 

T: - 

with respect to given 6 and 

t = to the following holds 

(1.1) 

and for att t in the interval to < t 4 T the following relationship is 
satisfied: 

,&sKC (l-2) 
6 

Here T, E , and C are given. 

Let us find conditions for stability (in the above sense) of unper- 

turbed motion of a system for a few cases. 

2. Linear Systems with Variable Coefficients. In this case the 

equations of the perturbed motion of the system have the following form: 

whxe p,,(t) 
pend on some 

dx 
8 = psi (t) Xi +a . * + Pm (t) Xn dt (s = 1, . ..( tl) (2.1) 

are real bounded continuous functions of time t and may de- 

parameters. 

To solve the problem let us consider the function 

2V = eBzL (xl2 + . . . + zn2) P-2) 

where a is a positive nunber which we are leaving undefined for the time 

333 



334 Chzhan-Sy- In 

being. This function was first used by Liapuuov in his proof of the 
theorem of boundedness of characteristic numbers. 

In virtue of (2.1) we have 

Here 

Let us choose a and the parameters of the coefficients p,, such that 

the quadratic form W would be negative definite. In accordance with 

Sylvester’s theorems it is’sufficient and necessary to this end to have 

the inequalities 

- p11 f ; - p’2 ; p21 . . . - 
P1r + Pr1 

2 

L),= . . . . . . . . . . . . . . . . . . . >o 
(?=I, . . . . R) (2.4) 

PI.1 + Pl, Pr2 + P2r a 
- 

2 - 2 . . .-p&T 

Under these conditions - W will be positive definite quadratic form 

and, therefore, it is always possible to find a positive nmber p such’ 

that the following will hold good: 

-w=-x( Psr;Prs -6,,~)s,r,>~(~,a+...+z,2) (2.5) 
S. r 

Substituting inequality (2.5) into (2.3), by virtue of (2.2), we obtain 

$ < - p + e--rl (x12 + . . . + x,2) = --- pv (2.6) 

Let us assume that at t = t0 the point (x1,,, . . . . xnO) lies on the 

sphere (6 ), i.e. xIo2 + . . . + XnO 
2 

= c and that at some instant t the 

point reaches the sphere (C), i.e. xi2 + . . . + xn2 = c. 

Let us find this instant. Let t0 = 0. Then, integrating inequality 

(2.6), we obtain 

v < V()e-cl’ 

&t, according to (2.2) 

L-, = 1 E, v = .?_e-“1C 
9 ‘L 

lherefore 
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(2.7) 

From this we can see that if the last inequality has the opposite sign 

then the point (n,, . . . , x,,) cannot reach the sphere (C). Therefore, if 

T= $-&n; (24 

then for all t < T no trajectory can extend beyond the sphere (Cl. Further, 

it may be seen from (2.7) that the snaller the sphere (0, the greater the 

time t. Therefore, if conditions (2.8) are satisfied then inequalities 

(1.1) and (1.2) will also be satisfied. 

Equation (2.8) contains a and cc, which must be so chosen that equation 

(2.5) is satisfied. Let us write (2.5) in the following form: 

(2.9) 

Thus w1 is a positive definite form. 

Let 

A=a--_r. (2.10) 

‘Ihe necessary and sufficient conditions for the quadratic foxm (2.9) 

to be positive are of the form 

- Pll 4- ; 
_ PI2 + Pa 

2 

D,= . . . . . . . . . . . 

&I + Pl, PI.2 + P2r - -_ 
2 2 

From the above considerations 

can be stated. 

p1r + &l 
. . . - 2 

. . . . . . . . > 0 r=l, . . . . n) 

. . . --’ pm + ; 1 (2.11) 

the following conclusion for system (2.1) 

Theorem 1. ‘he unperturbed motion will be stable with respect to given 

c and C in the finite interval of time t0 < t < T if conditions (2.11) are 

satisfied. 

3. A Special Case of a Linear System and a Linear System 
with constant Coefficients. Let us consider a special case when for 

system (2.1) in the time interval t o < t < T the following equations hold 
good: 

psr (t) = csr + sts3r (t) (3.1) 
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where cbf are constants, 6 is a sufficiently 

bounded functions. In this case system (2.1) 

d% 

small n&r, and f,,(t) are 

has the form 

-$ = C,lX + . . . +Csnxn+~f6lx1+...+~fsnx, @=l,...,n) 

‘Ihe total derivative of function V (2.2) by virtue of this system has 
the form 

dV 
p=e -w.t 

‘lhe coefficients of the second quadratic form in brackets on the right- 

hand side of this equation are sufficiently small for the siw of the 

function in brackets to be completely determined by the sign of the first 

quadratic form. 

Performing calculations analogous to those of the preceding section we 

obtain stability conditions of form (2.111, where all p,,(t) are replaced 

by constants clr. 

Let us now consider a linear function with constant coefficients: 

dx 
2 = C,lXl + . . . + C*nX* df 

(e=l,....n) 

The total derivative of the function V (2.2) by virtue of 

the form 

(3.2) 

(3.2) has 

TO make dV/dt < 0, the following conditions must be satisfied: 

- Cl1 + F - Cl2 + CZl ClT + %l 
2’ - *- 2 

D,= . . . . . . . . . . . . . . . . . . >0 (r=l,...,n) 

‘ri + c1r 52 + czr -- - 
2 2 .*. -cm + $ 

U&r these conditions - IV will be a positive 
quadratic form. Its extresun on the sphere nL2 + 

by the expression 

(3.3) 

definite symnetric 

. . . + xn2 = A is defined 

-w=-- 2( C6t + Cr6 

6.7. 

2 -L~)x51Zr= $Xx*2 
6 

(3.4) 

where l/2 K are the roots of the secular equation 
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According to 
positive, since 

According to 

Sylvester’s theorem all these roots will be real and 
the quadratic form is positive definite. 

(3.4) we have: 

dV -_=-_Kc 
dt 

‘, e-“* (z12 + . . . + xn2) = - XV 

Carrying out a calculation analogous to that of the preceding section, 
R obtain an equality for the time of arrival of the point on the sphere 
(C) : 

t= ~1I-l; 
CC--x 

Let a - K = A. It is seen that X will be roots of the equation 

A(h)= I-++Z+=O (3.6) 

x (x) = /_ kp + a,,(; - $) 1 = 0 (3.5) 

All the roots of this secular equation will also be real. 

Let us examine only positive roots of equation (3.6). Let these be 
x 

1’ . . and let 0 < X, < X, 4 . . . < Xi. 

‘Ihen on the basis of the 
travel time of a point from 
X,-l ln(C/r ), and the least 
If we take 

equality t = A-l ln(C/c ) , the greatest possible 
the sphere ( c ) to the sphere (C) is equal to 
possible travel time is equal to XI-l ln(C/c ). 

(3.7) 

then conditions (1.1) and (1.2) will be satisfied. l’herefore, we have the 
following theoran. 

_ Theoren 2. For the unperturbed motion of the system to be stable with 
respect to given t and C in a finite time interval t,, Q t 4 T, it is 
sufficient for conditions (3.7) to be satisfied. 

4. Nonlinear system. let us consider a more general case. Let 

dx 
d= 
dt psi(t) z1 + * * * + pm (q &I + x, (s=l,...,n) (4.1) 

where X, = X,(t, xi, . . . . x,) are holomorphic functions of the variables 

x1’ . ..) x,, and first tenas of their expansions are not lower than of the 
second order. Coefficients of these functions are real continuous bounded 
functions of t. 
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1. c and C are sufficientlv mnall. ‘lhe total derivative of the func- 

tion (2.2) in virtue of (4.l)‘has the form 

dV 
dt= e-at W + 2 z8XI 

L I 

In this case the sign of dV/dt is completely determined by the sign of 

A, so that the inequality dV/dt < 0 is satisfied for conditions (2.4). 

Satisfying (2.4), we have 

‘& <-_IL $e-at(x,a+...+2n*) 

As in Section 2, we obtain 

t> &lIl G 

Let 

TL; 1n; (A = cf - tk) 

lhen (1.1) and (1.2) will be satisfied. Or, let us proceed this way: 
let 

Introducing 13 1 the notation S = I: xgXg, we have 
S 

isI<n(t)(X,2 + . . . + Gt2> 

where R(t) is a positive function which is the upper exact limit of the 

function 

1 
q2 + . . . + zn2 I I iI% x,x, for to<t<T 

6 

Let 

uw- 68, gj &Jr + R (t) (212 + . f . zn2) < - $ (LX12 + . . . + Zn2) (4.4) I 
8. r 

Obviously, if this condition is satisfied, then condition (4.3) applies 

Let us write (4.4) in different form: 

W, = 2 [- J’s7 ; P’S + 6,, (; - R (t))] x8xr > 0 
8. r 

For WI to be a positive form it is necessary and sufficient to satisfy 

the following inequalities: 
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- Pll + + -W) 
_ P1r + PI1 PlT + Pt1 

2 *.*- 2 

. . . . . . . . . . . . . . . . . . . . . . . . . 

Pr1 + Pl? Pr2 + Pnr - - 
2 2 .* . - prr + + - R (t) 

(r=I,...n) 

889 

>o 

(4.5) 

'lherefore, we have the following theorem for (4.1). 

&ores 3. For the unperturbed motion of system (4.1) to be stable 
with respect to given t and C in a finite time interval to\< t < T, it is 
sufficient for conditions (4.5) to be satisfied. 

Conditions (4.5) contain R(t). We can obtain other sufficient but 
simpler conditions without R(t). 

Indeed, from the inequality (4.3) it follows that in case 1 the sign 
of the function on the left-hand side of this inequality is completely 
determined by the quadratic form. 'Ihus for (4.3) to apply 
to satisfy the inequalities (2.11). 

2. Case when c and C are finite. In this case 

dV 
dt 

= e-=l [W + 2 x.Xs] (w = 2 ('Or; Pr8 - 8,,+) (4.6) 
8 8, t 

but f and C are finite and, therefore, the sign of dV/dt is mt deter- 
mined by the sign of the quadratic form R. let 

it is sufficient 

After carrying out canpYtations analogous to those perfonaed for case 
1, we obtain conditions of form (4.5) and a theorem analogous to theorem 3. 

It should be noted that in this case c and C must be verified by con- 
ditions (4.5), which contain R(t) and permit only a limited range over 
which the variables xS may be varied. 

Besides, in this case k and C are finite) conditions (2.11) do not 

apply* 

3. Case when p ,(t) = c 
foxmity with (4.lf, we havi' 

+ sf,,(t), i.e. (3.1). In this case, in con- 
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The total derivative of the function V (2.2) in virtue of (4.7) has 

the form 

d’; = e_“f 

- dt 6,, 5) xsxr + 2 xsxs + 2 6 + x.xr] (4.3) 
S 1. r 

If band C are sufficiently small, the sign of the function in brackets 

on the right-hand side of the equation is corrpletely determined by the 
sign of the first quadratic form. In that case we obtain stability condi- 

tions of form (2.11) with. all pS,(t) replaced by constants cSr. 

when t and C are finite, the sign of the function in brackets is 

completely determined by the signs of the first two terms of this function. 

In that case we obtain stability conditions of form (4.5) with all pS,(t) 

replaced by constants c,,. 

5. Nonlinear System with steady Disturbances. Let us consider 

a system 

dz 
-2 = &l(t) x1+ . . . 

dt + Pm (0 273 + x9 + 4 (s = I, . . n) (5.1) 

where Rs describe the steady disturbances. 

ity with [ 3 1 ) that Rs Rd(t, x1, 

For Rs we assume (in conform- 

. . . , x,) are real continuous bounded 

functions of t and xs and that Rs(t, 0, . . . , 0) = 0; and further, that 

R, (t, 51, . . . , zn) = 181 (t) xi + . . . + &n (t) xn + AX, (5.2) 

where ZSr(t) and A XS have the same characteristics as the functions 

p,,(t) and X8. In general Rb are unknown functions, but in many cases 
their values can be estimate. 

According to (5.2) we have 

% 
- = (Psi + 181) xi+ . . . dt 

+ (pm + Isn) x,, + X, + AX, 6 = 1.. 1 4 (5.3) 

1) Let us consider a case when c and C are sufficiently small. 

‘lhe total derivative of the function V (2.2) in virtue of (5.3) has 

the form 

In this case dV/dt < 0, if 
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We will state the results for system (5.1) without computations. 

Theoree 4. For the unperturbed motion of system (5.1) to be stable with 
respect to given E and C in the finite time interval t0 4 t 4 T, it is 
sufficient for the following inequalities to be satisfied: 

-- (PU + L) + -$ - R (0 “ClZ. . . ‘tlr 

D,= . . . . ..I.................. >0 

70 7r2 ’ . * (pm + &4+ $ - K (t) 

@=I, . . ..n) (5.5) 

Here 

S = 2 2, (X, + AX,), i S I< R (t) (xl2 -f- . . . + xn2) 
* 

Faction R(t) is positive and is the upper exact limit of the function 

i 
212 + . . . + x*2 

I 
xze (X, + AU 
I 

In addition to (5.51, the following sufficient conditions also apply: 

- (Pll -i- 41) +$ ‘12 * * * 71, 

Dr= . . . . . . .._....a......... 

T rl 

>o 

(5.ci) 

2. If f and C are finite, then ‘Ibeorem 4 and conditions (5.5) apply, 
while conditions (5.6) do not. 

3. An investigation of the case when p,,(t) = clr + 6f,r(t), and 
Z*,(t) = C’,, = constant, may be carried out in the same way as in 



342 Chzhan-Sy-In 

Section 4; the results will he analogous to those of Section 4. 

6. Examples. 1. Let us consider a second-order system: 

dxl 
- = p11 (t) 21 I;’ p1z (q x2, dt % z: P?l (t) 21 + P22 (0 T2 (6.1) 

According to Theorem 1 and (2.11)) the necessary conditions wi 11 be 

Or, using (2.3) through (Z.lO), we have 

PI,(l) -+*_4 >O 

If ps,(t) contain parameters, then they must be so chosen that the in- 

equalities (6 .2) are satisfied. 

If P (t) = c + Sf (t) then, according tp the considerations of 

Sections:, the f~~lo~~~r~onditions hold good: 

kcorcling to (4.5)) we have 

liere R(t) is the upper exact limit of the function 

1 XxX, -i .r,Jl’z / 
zlY A. x22 

Gnnparison of (6.5) and (6.2) reveals that stability conditions for 
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system (6.4) are narrower than for the linear system. ‘lhe larger R( t 1, 
the narrower is (6.5). ‘Ihus, for R(t) = 11‘2 X, we have 

- pu > 0, (_ /Jk,) (_./;.?“)_ (PI.’ -‘I, PAL > 0 (6.6) 

‘lhese conditions are analogous to conditions (6.2) for linear system 

(6.1) when 

&ln+- =o 

In this case c = C, and T is arbitrary. 

Men E and C are sufficiently small, the R(t) is also very small. In 

this case, in conformity with (2.11), we have 

‘Ihis is identical with (6.2) derived for the linear system. 

3. For a system with steady disturbances 

((i.8) 

and with conditions (5.2), we have (according to (5.5) and (5.6) ) the 

following stability conditions: 

I- (PI1 + 41) + 2s Ill+ - I( (t)] [ - (f)?? -j- I,?) + & 111 ; - I{ (t)] -- 

I(PlA- ~ll)f-(pz,+ldjf - .- 
4 >o (6.9) 

and for sufficiently small E and C we have 

In conclusion, the author expresses his deep gratitude to N.G. Chetaev 
for the statement of the problem and valuable comnents. 
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